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Abstract—Internet of things has increased the rate of data
generation. Clustering is one of the most important tasks in this
domain to find the latent correlation between data. However,
performing today’s clustering tasks is often inefficient due to the
data movement cost between cores and memory. We propose
HDCluster, a brain-inspired unsupervised learning algorithm
which clusters input data in a high-dimensional space by fully
mapping and processing in memory. Instead of clustering in-
put data in either fixed-point or floating-point representation,
HDCluster maps data to vectors with dimension in thousands,
called hypervectors, to cluster them. Our evaluation shows that
HDCluster provides better clustering quality for the tasks that
involve a large amount of data while providing a potential for
accelerating in a memory-centric architecture.

Index Terms—Hyperdimension computing, Clustering, Brain-
inspired computing

I. INTRODUCTION

Internet of things (IoT) significantly increases the number
of devices around the world. Recent studies report that more
than 25 billion connected smart devices exist in 2015. [1] This
number is expected to be doubled by 2020. [2] As the large
network of connected devices generates a huge amount of data,
machine learning gains popularity as an autonomous solution
that extracts the useful information and learns patterns from
the collected data [3]-[5]. However, the large amount of data
dominates the processing capability of the current computing
systems [6]-[8]. This inefficiency is mainly due to significant
data movement costs between processing cores and memory.
For example, to perform clustering tasks which are one of the
most important unsupervised learning, [9], [10] the processors
expensively compute the similarity between data points by
fetching every point from the memory. A traditional solution
is to migrate this issue by running the tasks on a cloud, but
transferring large amount of data incurs significant congestion
on the network. In addition, this may inherently lead to security
and privacy issues in many applications. Thus, going toward
IoT, it is crucial to have a light-weight clustering technique
with adequate architectural supports which can efficiently run
even on end-node devices.

Brain-inspired Hyperdimensional (HD) computing is based
on understanding the fact that brains compute with patterns
of neural activity which are not readily associated with
numbers [11]. However, due to the very large size of the brain’s
circuits, such neural activity patterns can only be modeled with
points of high-dimensional space (e.g., D=10,000). Operations
on hypervectors can be combined into interesting computational
behavior with unique features that make them robust and
efficient. HD computing builds upon a well-defined set of
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TABLE I
TABLE OF NOTATIONS
Symbol Definition Symbol Definition
v Feature vector in original domain L Level hypervectors € {0, 1}
n # of features in original domain Q # of quanitized levels
D Dimension of encoded data ID; An ID hypervector € {0, 1}”
K # of clusters Cr A cluster center hypervector € {0,1}7
h A non-binary hypervector € NP N # of data points
EF Encoded data points of a cluster 1 # of executed iterations

operations with random HD vectors, is extremely robust in
the presence of failures, and offers a complete computational
paradigm that is easily applied to learning problems [11], [12].
Its main differentiation from other paradigms is that data are
represented as approximate patterns, which can favorably scale
for many learning applications.

In this paper, we present a new clustering algorithm which
maps a large amount of original data to a hardware-friendly
high-dimension space and performs the clustering tasks by
using Hyperdimensional (HD) computing. HD computing is
an alternative computational model which emulates cognition
tasks by computing with vectors in high-dimensional space,
called hypervectors. A hypervector has the dimensionality in
thousands (e.g., D=10,000) to mimic neural activity [11]. Since
the elements of hypervectors are independent in processing,
we can design a fully-parallelized hardware architecture that
handles the hypervectors. In this work, we show how the
proposed HDCluster encodes the original data to the hyper-
vectors without losing the necessary information and performs
the clustering tasks with well-defined linear algebra for the
data types in the high-dimension space. To the best of our
knowledge, HDCluster is the first design which processes the
clustering tasks with the hypervectors. Our evaluation shows
that HDCluster provides better clustering quality for the tasks
that involve a large amount of data while providing a potential
for accelerating in a memory-centric architecture.

II. HDCLUSTER ALGORITHM
A. HDCluster Overview

We propose HDCluster, a brain-inspired clustering algorithm
which clusters input data into a high-dimensional space. Instead
of clustering input data in either fixed-point or floating-point
representations, HDCluster maps data to vectors with thousands
of dimensions, called hypervectors, and then clusters them using
concrete linear algebra. The well-defined set of HD operations
is known to be extremely robust in the presence of failures,
and offers a complete computational paradigm that is easily
applied to learning problems such as analogy-based reasoning,
sequence memory, language recognition, biosignal processing,
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Fig. 1. The functionality of the proposed HDCluster algorithm.

speech recognition, and prediction from multimodal sensor
fusion [13]-[20].

Figure 1 illustrates an overview of HDCluster. As the first
step, HDCluster encodes data into high-dimensional space
and then applies clustering tasks to the encoded data (@).
The clustering procedure starts with the initial centers of each
cluster. For each iteration, HDCluster identifies which center is
the most similar to each data point. The identified centers are
stored as rags (@). Then, HDCluster updates the centers by
calculating the average of the data points whose tags are the
same (@). The iterations are repeated to obtain the converged
cluster centers (@). In the next section, we show the details
of the clustering procedure.

B. Encoding into HD Space

The first step of HDCluster is to encode input data into the
hypervectors, where an original data point has n features, i.e.,
v =(vi,...v,) [21]. Table I summarizes all notations used in
this paper. An encoded hypervector that corresponds to one data
point has D dimensions (e.g. D = 10,000). We need to keep all
information of a data point in the original space, i.e., the feature
values and their indexes. As Figure 2a shows, we use two
sets of pre-computed hypervectors: level and ID hypervectors.
To create level hypervectors, we compute the minimum and
maximum feature values among all data points, V,,, and Vg,
and then quantize the range of [Vyn, Vel linearly into Q
levels, L = {Li,---,Lo}. Each level hypervector, L;, is unique
and has D binarized dimensions, i.e., L; € {0,1}”. The level
hypervectors need to have the spectrum of similarities, such
that the neighbor levels get more similar hypervectors. We
create the first level hypervector, L;, by randomly selecting
each element of a hypervector to be either 0 or 1 value. The
second level hypervector, Ly, is created by flipping D/Q random
dimensions of the L;. This continues until creating the Ly
hypervector by flipping D/Q random dimensions of Ly_j.
Since we select and flip the dimensions randomly, there is a
high probability that the L; and Ly will have D/2 dimension
difference. As a result, the level hypervectors have similar
values if the corresponding original data are closer, while L;
and Ly will be nearly orthogonal.

The hypervector also needs to contain all the information
that the original features have. To differentiate the impact of
each feature index, we devise ID hypervectors, {IDy,--- ,ID,}.
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An ID hypervector has the binarized dimensions, i.e., ID; €
{0,1}P. We create IDs with random binary values so that
the ID hypervectors of different feature indexes are nearly
orthogonal:

8(ID;,ID;})~D/2 (i#j & 0<i,j<n)

where the similarity metric, §(ID;,ID;), is the Hamming
distance between the two ID hypervectors. The orthogonality
of ID hypervectors is ensured as long as the hypervector
dimension, D, is large enough compared to the number of
features (D >> n) in the original data point.

Figure 2b shows how we map each data point, v, to the
high-dimensional space using the precomputed hypervectors.
For each feature, we perform an element-wise XOR operation
for the ID and level hypervector corresponding to the feature
value. The different features are combined by adding each
element. For example, when a feature value of an original
data point, v;, is quantized to L; € L, the following equation
represents the calculated hypervector, h:

h = ID®L + ID,® Lry+... + ID,®L,.

Note that the element-wise addition can make a hypervector
that has integer elements, i.e., H € NP. To perform all the other
clustering procedures with binarized hypervectors, we apply a
majority function for the calculated hypervector. For a given
hypervector, h = (hy,--- ,hp), the majority function is defined
as follows:

0, ifh<rt

MAJ(h,T) = (K}, h},) where h} = .
1, otherwise.

Using the majority function, the final hypervector for each data
point is encoded by e = MAJ(h,n/2), and e € {0,1}".

C. Clustering in HD Space

HDCluster procedure identifies the cluster indexes (tags)
through an iterative process as shown in Figure 2¢ and d, by
using the encoded hypervectors. The proposed HD clustering
algorithm is inspired by k-means. [22] In a similar way to
the standard k-means algorithm, we initially choose K random
hypervectors as cluster centers. We denote each hypervector
for the centers as {Cy, C, ---,Ck}, where C; € {0,1}?, as
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Fig. 2. The functionality of HDCluster algorithm using encoding, data and search blocks.

shown in Figure 2d. Randomness and high dimensionality of
hypervectors ensure that the centers of clusters are orthogonal at
the initial iteration. With the initial cluster centers, we perform
an iterative process to find the best clusters. There are two steps
in each iteration, computing distance similarity and updating
cluster centers.

Computing distance similarity: In this step, HDCluster
assigns a cluster center for each encoded hypervector among
all the center candidates. HDCluster measures the Hamming
distances between the hypervector of a data point and each k
center and identifies the cluster center which has the highest
similarity. For an encoded hypervector, e, the index of the
cluster center, called rag, k, is chosen as follows:

argmin 0(Cy,e)
k

Updating cluster centers: After identifying tags of all data
points, HDCluster updates the cluster centers using the data
points which belong to each cluster. For a set of the data
points in the k™ cluster, EF = {eé‘}, we perform element-wise
additions to produce the hypervector sum, s* =Y ef. Then,
HDCluster binarizes the hypervector sum so that it is mapped
into the {0,1}” space. The following equation illustrates this
procedure:

Cr = MAJ(s", [E*|/2)

Termination of HDCluster: The algorithm converges when
there is no significant change in the cluster centers. This itera-
tive procedure continues until (i) the hypervectors representing
the center of clusters has minor change during two consecutive
iterations or (ii) the number of iterations exceeds a pre-defined
parameter.

III. EXPERIMENTAL RESULTS
A. Experimental Setup

We implemented full HDCluster functionality using C++
implementation. We test the clustering quality of the proposed
HDCluster, with diverse datasets including: MNIST handwritten
digit [23], DIM dataset [24], Glass Identification [25], Iris [26],
Voice dataset (ISOLET) [27] and medical-related datasets such
as Gene Expression Cancer RNA Sequence (RNA-Seq) [28],
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Breast Cancer dataset [29], Primary Tumor dataset [30], and
Parkinsons dataset [31]. We evaluate the clustering quality for
each dataset by using the provided ground truth.

B. Clustering Quality

Table II show the quality of clustering for HDCluster and
k-means algorithms over different applications. The quality
of clustering has been measured by comparing the result of
clustering with the provided ground truth. For all the reported
results, we use Q = 16 and D = 10K. To better understand
when HDCluster provides higher quality and efficiency, we
perform the evaluation for DIM which has multiple datasets
with different feature sizes. Table III summarizes the evaluation
results. As compared to the k-means++, HDCluster shows
higher robustness with the increase in the dimension of the
original data. For example, k-means++ and HDCluster exhibit
the similar quality for DIM 32, while for DIM 1024, the
HDCluster provides 10% better clustering quality. In addition,
since the computation cost of HDCluster is independent of
dimensions of a dataset after encoding the dataset, we achieve
higher efficiency for larger dimension than k-means++ which
does not scale.

C. Parameter Exploration

The precision of the encoding procedure is defined by how
accurate it can map original data points to the high-dimensional
space. For example, quantizing each feature to a small level
(Q) may not keep all the required information of the original
data points. With the relatively large number of clusters (K),
the encoded hypervector may need to maintain more fine-
grained information. Figure 3 shows the sufficient quantization
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TABLE II
THE QUALITY OF CLUSTERING OF HDCLUSTER AS COMPARE TO K-MEANS (Q = 16).

\ Datasets | MNIST | ISOLET | IRIS | Glass | Unbalance | RNA-seq | Cancer | Ecoli | Parkinsons |
# of Data Samples (N) | 10,000 7,797 150 214 6,500 801 569 339 6,590
# of Features (n) 784 617 4 10 2 20,531 32 17 1
# of Clusters (K) 10 26 3 7 8 5 2 22 2
k-means 48.8% 28.4% 88.7% | 51.8% 93.8% 37.5% 94.1% 74.3% 75.3%
HDCluster 58.6% 33.1% 89.9% | 67.5% 92.3% 37.5% 96.2% 78.5% 75.6%
TABLE III them using concrete linear algebra for hypervectors. HDCluster

THE QUALITY OF CLUSTERING OF HDCLUSTER ON DIM DATASET WITH
DIFFERENT DIMENSIONS.

‘ Dataset: ‘ DIM 32 DIM 128 DIM 256 DIM 512 DIM 1024 ‘
# of Features (n) 32 128 256 512 1024
k-means 87.5% 81.2% 76.4% 68.6% 62.5%
HDCluster 87.5% 85.3% 81.2% 76.1% 72.6%
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Fig. 4. (a) quality loss of clustering and (b) normalized Energy consumption
and execution time of HDCluster using different dimensions.

levels, O, when the number of clusters changes from 5 to 30,
where the quality is evaluated in mean square error. HDCluster
with a large number of cluster centers requires to quantize
the input data into a higher number of levels. For instance,
for ISOLET, HDCluster achieves the best quality with Q =8
when clustering with 10 centers, while the quantization level
of Q =32 is required in the case of clustering with 30 centers.

D. Scalability with Hypervector Dimension

Since the hypervectors map the original information into
a high-dimension space, the quality of clustering is directly
related to the vector size. In the accelerator design, it also
determines the system efficiency. Figure 4a shows the quality
loss of clustering when HDCluster dimensionality changes
from 1k to 10k. The results show that, for most of the
applications, HDCluster can perform the clustering tasks with a
relatively small dimensionality, while providing similar quality
of clustering. When reducing the dimensionality of hypervectors
to 4,000 and 2,000, HDCluster on average has 1.7% and 3.1%
lower quality respectively as compared to HDCluster with
the full dimension, i.e., D = 10K. Figure 4b also shows the
normalized energy and execution time of HDCluster running.
All results are normalized to HDCluster running with 10K
hypervector. Our results shows that decreasing dimensionality
from 10K to 4K can result in 2.1x speedup and 2.4x energy
efficiency.

IV. CONCLUSION

We propose a novel clustering algorithm, HDCluster, that
maps data points to the high-dimensional space and clusters
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provides high clustering quality for diverse and practical
applications that involve a large number of samples and high
complexity in feature domains. Our future work is to design an
accelerator which processes the entire HDCluster operations
in a memory-centric architecture.
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